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Talk Outline 

Outline: 
 
Introduction to solar panels and devices 
 
Back contact silicon devices 
 
Back contact thin film devices 
 
My PV system 
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1st  Generation Technologies 

Light hits the photovoltaic device 
Each photon that enters with energy greater than the bandgap creates an electron-hole pair 
Carriers are separated by a junction between p- and n-type material and move to +/- electrodes 
Those that don’t recombine on the way or at the interfaces supply current 
Geometries are optimized to maximize absorption of light and minimize carrier recombination 
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http://upload.wikimedia.org/wikipedia/en/d/d7/Silicon_Solar_cell_structure_and_mechanism.svg
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Thin film technologies based on thin film CdTe can now be produced for less than $1/watt, 
well below crystalline Si costs.  The present cost leader produced at $0.73/watt ; 
production panel efficiency exceeding 12 % and record panel 14.7% 

Thin film devices  

The bandgap is maximum energy extractable from a photon 

Direct bandgap absorbers such as a-Si, CdTe, CIS or CIGS 

Otherwise similar 1D geometry: 

Planar contact/p-type/n-type/contact  CIGS (Honda Bldg) 
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Devices based on nanostructuring – CdTe/CdS 

Use 3D architecture to achieve lateral carrier separation 

Sub-micrometer dimensions for inorganic devices 

500 nm pitch, 600+ nm tall CdS pillars/CdTe matrix 6% efficient device 

Front and back electrode geometry typical of planar thin film and Si technologies 

Gold/copper top electrode reflects 50 % of the incoming light 
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3rd Generation Technologies 

Z. Fan et al., Nat. Mater. Lett., 2009 
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“Hero” Photovoltaic Devices 

Numbers in the lab differ from commercial module efficiencies  
• Do indicate the potential efficiencies of panel-scale technologies 
• Don’t indicate difficulty of achieving performance 
• Don’t indicate cost 
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Some silicon photovoltaics use a dual back 
contact geometry 

Record setting efficiencies in 1989 over 22% at 1 
sun and 28% under 150 sun 

 

Silicon Back Contact Technologies 
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R.A. Sinton and R.M. Swanson, IEEE Trans. Electron. Dev., 1987 

R.R. King et al, , Appl. Phs. Lett, 1989 
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Successive aligned patterning steps 
More difficult for dimensions of thin film and nanostructured devices 
 

+ - + + - - - 

(Dual) back contact geometry 
No light blocked by front contact metal lines or 
transparent conducting oxide 

 
Place dopants and contacts through successive 
patterning steps 

Silicon Back Contact Technologies 
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Start with patterned electrodes 
• Utilize the interdigitated “comb” structures of microelectronics as electrodes 
and deposit semiconductor on them to define device dimensions and geometry 

V+ 

V- 

hν 

Back Contact Template 

Planview Cross-section 
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Devices based on CdS/CdTe system 
Electrodeposit CdS on one electrode 
Electrodeposit CdTe on both electrodes 

CdS/CdTe Devices 

CdS 
   

CdTe over CdS 
  

CdTe 
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Pros: 
• Industrially relevant materials system 
• Eliminate detrimental UV absorption in “window” layer (i.e., CdS behind the CdTe)  
• Eliminate top conducting oxide and metallization that block incoming light 
• Create surface topography that could enhance light absorption 
• Material and process generic after first electrodeposition step 
• Electrodeposition yields extremely high material utilization 

Cons: 
• Electrode patterning – length scale dictated by recombination length (carrier lifetime) 
• Electrodes present during all processing 

CdS/CdTe Devices 
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Modeling dual back-contact geometry : CdS behind CdTe 
100 nm CdS under 2 µm CdTe in the 2 µm pitch 3D devices : different electrode heights vs planar 
These early modeling results ignore recombination at interfaces/surfaces 
 

CdS/CdTe Modeling 
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Taller electrodes are beneficial 
as they reduce carrier 
diffusion length 
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CdS 
CdTe 
Electrode 

External Quantum Efficiency: 
EQE – fraction of photons that 
actually generate current (as 
function of wavelength) 
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Modeling device performance 
External quantum efficiency and device performance are predicted to be dominated by the carrier 
lifetime 
3D surface topography also influences performance 

CdS/CdTe Modeling 
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Device performance improves with annealing  
Also required for CdS/CdTe planar devices (often in the presence of CdCl2) 

Device efficiency of 0.9 % consistent with dimensions, microstructure, non-ideal contacts 
Resistivity is an issue in these devices 

CdS/CdTe Devices 
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CdTe grain size increases and CdS/CdTe junction improves with annealing 
• Performance improves 

Electrodeposited CdTe reacts with the Pt electrodes during annealing after CdCl2 solution dip 
• Voids form at the interface prior to optimum annealing for the semiconductor and device fails 

CdS/CdTe Devices 
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(a)
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CdTe 
 
 
 

CdS 
 
 
 

Electrodeposited CdTe does not react with Ru electrodes during annealing after CdCl2 
solution dip 

•  Adhesion not ideal 
(b)
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Performance of devices annealed at 350 °C for 20 min exhibits trends consistent 
with transport limitation expected for low temperature anneal. 

• Jsc trends with the width of the gap between electrodes – consistent with simulation 
• Voc only weakly trends with the gap 

Performance limited by annealing  conditions and contact to CdS 

CdS/CdTe Devices 
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Modeling  suggests origin of observed EQE behavior for these materials/devices 
• High density of carriers generated near the surface for shorter wavelengths results in 
increased recombination due to poor quality of material (short lifetime) 
•Low lamp intensity possible origin up uptick at shortest wavelengths (i.e., artifact) 

CdS/CdTe Evaluation 
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CdSe/CdTe Devices 
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Back contact geometry gives flexibility 
N-type material substitution without risk of 
blocking incoming light 
Might improve contact, junction, overall 
performance 

 

Replace CdS with CdSe 
Lower bandgap ~1.7 eV is unacceptable for CdTe 
absorber with front contact/window layer 
Very thin (50 nm) iridium contacts - nonreactive 
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Dark 

Light 

EQE 

Improved EQE for ~0.6 and ~0.9 µm thick CdTe 
Decrease at shorter wavelengths not due to 
absorption in (nonexistent) window layer 

 

Improved AM1.5 short circuit current and fill 
factor 

No voiding at the semiconductor/iridium 
electrode interfaces 
Large work function iridium not ideal for n-type 
CdSe contact… 

CdSe/CdTe Devices 
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Performance depends on thickness of CdSe 
Too thin – pinholes lead to shunting, reducing Voc and Jsc 

 

Performance depends on electrode gap 
Too wide, recombination occurs before charges can be 
collected, reducing Jsc  

 

AM1.5 : Eff. 2.0%; Voc 510 mV; Jsc 8 mA/cm2; fill factor 48%  
EQE: maximum 29% 

 

CdSe/CdTe Devices 

Smallest pitch 2 µm 
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Higher quality CdTe – pulsed laser deposited (M. Sahiner, Seton Hall Univ.) 
Short circuit current 60% higher at 13.5 mA/cm2 and EQE exceeding 41% 

Voc needs to be improved  
Resistivity is less of an issue with higher quality CdTe – reduced dependence on pitch 

The CdSe does not prevent incoming light from reaching the CdTe absorber 
CdSe in front of the CdTe would absorb at ~730 nm; but it is behind. 

CdSe/CdTe (PLD) Devices 
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Summary: 
• Back contact geometry solar cells – eliminating layers that block light and add to 
processing complexity 
• CdS/CdTe devices – traditional materials in back contact geometry 

• AM1.5: Jsc = 4 mA/cm2, Voc = 520 mV, ff = 39 % , Eff. = 0.9 %;  Max EQE = 21%  
• CdSe/CdTe devices – taking advantage of the geometry to substitute materials 

• AM1.5: Jsc = 8 mA/cm2, Voc = 510 mV, ff = 48 % , Eff. = 2.0 %;  Max EQE = 30% 
• CdSe/CdTe (PLD) devices – the role of material quality in device performance 

• AM1.5: Jsc = 13 mA/cm2, Voc = 400 mV, ff = 42 % , Eff. = 2.2 %;  Max EQE = 41% 
• These are early devices 

• Back contact devices based on other materials and processes by other researchers  
Ongoing Efforts 

• Smaller dimensions 
• Differentiated electrodes 
• Surface passivation 
• Other materials 

CdS/CdTe Devices 
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My Solar System 

42 panels with 17.1% panel (19.3 % wafer) conversion efficiency and microinverters 
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“Nameplate capacity” 9.02 kW DC 
Peak capacity ~ 8 kW AC 
Nominal Generation ~ 11 MWh/yr 
 
Panels were highest available efficiency when installed 
Hip-roof : East/West panels are nonideal, mainly in winter 
as solar path sinks toward south 
Tree coverage on west face 
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Our electric bill is: 
$7 /mo (fee) for two-thirds of 
the year  
This reflects net metering 
carryover 
Substantially reduced in 
winter months. 

Impact on Electric Bill 
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Amortization of total install cost 
Payback: 
2010:  

30% Federal income tax credit 
~$7k MD grant 

2012:  
Mo.Co. $5k property tax credit 

Each Year: 
Eleven Solar Renewable Energy Credits 
(SRECs)  
Electric bill energy savings 
Five years of ~$100 state income tax 
credit 

System Payback 

Premium panels added > $1/watt – but high watt system lowered roof costs by $1/watt 
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Pros: 
Energy savings are always there but their value depends on the nature of your 
heating/cooling , utilization, etc. 
Panels are much cheaper than when I installed my system 
They are guaranteed to provide 80 % of nameplate value for 25 years (!) 

Cons: 
Does not address balance of system costs 
County and state programs are no longer available 
Future of federal credit is uncertain 
SREC value has always been an unknown – recent state legislation aimed at 
stabilizing/raising it for a few years 

 
I am as happy to discuss PV installation and installers as I am to discuss my 
research. 
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Thinking of installing your own ? 
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Thank you for your attention! 
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